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Summarize parameterization aspects of the recent publication:

Moncrieff, M.W., C. Liu, and P. Bogenschutz, 2017: Simulation, modeling and dynamically 
based parameterization of organized tropical convection for Global Climate Models. J. 
Atmos. Sci., 74, 1363-1380, doi:10.1175/JAS-D-16-0166.1. 

supported by a NASA ROSES grant between  NCAR, CCNY and GISS: Diagnostic Analysis 
and  Cloud-System Modeling of Organized Tropical Convection in the YOTC - ECMWF 
Global Database to Develop Climate Model Parameterizations



Atmospheric	convection	observed	to	organize	into	“coherent	structures”,	a	dynamical	
property	linked	to	mean-state	conditions	notably	vertical	shear.

But	this	feature		is	not	treated	by	traditional	convective	parameterizations.

Coherent	structures	are	fundamental	to	fluids	&	plasmas.	

Seek	the	simplest	possible	(minimalist)	parameterization	for	organized	convection	
represented	by	coherent	structures	based	on	observationally	verified	nonlinear	
dynamical	models

Focus	on	eastward- propagating	tropical	systems

Preamble	



Fraction of Rainfall in  MCS (TRMM)  

Tao & Moncrieff (2009)    



Precipitable Water	from	TRMM	data	for	YOTC	(La	Nina	Conditions)	

Tony	Wimmers &	Chris	Velden (CIMSS,	U.	Wisconsin	at	Madison)



Slantwise	Overturning	Model	

Multiscale	Coherent	Structure	Parameterization	(MCSP)



Convective-Mesoscale	Anatomy	of	MCS	

Lafore &	Moncrieff	(1987);	Lafore et	al.	(2017)
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2nd Baroclinic Organized Momentum Transport
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Momentum Transport  Parameterization
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1st & 2nd Baroclinic Modes of Convective Heating
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1st baroclinic mode 2nd baroclinc mode

Top-heavy Heating:  
2nd baroclinic Mesoscale 

Mode

Deep Heating:
1st baroclinic

Convective Mode   

Cumulus 
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Lagrangian Slant-wise  Overturning Model

Three Energy Sources:  Potential, Kinetic, Work done by Pressure Gradient
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Multiscale self-similarity assumption: Convective heating proportional to vertical velocity

F: Along–trajectory buoyancy
G: Environmental shear



• Organized convection represented by slantwise overturning affects  
the large-scale distribution of precipitation and tropical-waves, with 
particular attention to regions identified by the TRMM (e.g., ITCZ, 
SPCZ, Maritime Continent, warm-pool) concerning MCS activity 

• Address issues in the minimalist way  focused on 2nd baroclinic
tendencies:

i) ‘Top-heavy’ convective  heating
ii) Organized momentum transport   

• Analyze years 2-8 of 10-year CAM 5.5 simulations

Experiments with CAM 5.5  GCM  



MCSP	Effects	on	Precipitation

Momentum	Transport	

Top-heavy	Heating	

Precipitation	rate	
(8-year	average)	

Annual	precipitation	
(8-year	average)

Top-heavy	Heating	

Momentum	Transport



CAM	5.5		Control	

Precipitation	Rate	(15S	-15N)	

MCSP:	2nd Baroclinic Heating	 MCSP:	Momentum	Transport



Zonal	Wind	at	200	hPa (15S	– 15N)

CAM	5.5	Control

MCSP:	2nd Baroclinic Momentum	Transport		(	𝜶𝟑 =	1𝒎𝒔.𝟏	𝒅𝒂𝒚.𝟏) MCSP:	2nd Baroclinic Heating	(𝜶𝟏 =	1)		



Conclusions
• Multiscale Coherent Structure Parameterization (MCSP) with slantwise overturning as the 

transport module adds mesoscale organization to  traditional convective parameterization.

• Multiscale self-similarity of squall lines, MCSs, supercluster etc.  stems from  
proportionality between convective heating and cnvective vertical  velocity 

• MCSP demonstrates the global role of organized convection

• Consisting of a few lines of code, MCSP is useable for long climate simulations

• Coherent  response to  2nd baroclinic heating & momentum transport in Indian Ocean, 
Maritime Continent  and Tropical Western Pacific, ITCZ -- broadly consistent with TRMM

• Coherent structure paradigm implies new scale-selection mechanisms for organized 
convection at meso-to-synoptic scales 

• Much more remains to be done, e.g., 
- Relationship to Khouider-Majda multicloud parameterization (MCP) 
- Analysis of 9 km ECMWF IFS Virtual Global Field Campaign database 
for PPP  & YMC in the July 2017-July 2019 period.

- Effects outside the Warm Pool
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